

CS18FS8192(5/W) CS16FS8192(5/W)

Revision History

Rev. No.	<u>History</u>	Issue Date
1.0	Initial issue	Apr.15,2014
2.0	Revise "Chiplus reserves the right to change product or	Nov. 8, 2021
	specification without notice" to "Chiplus reserves the right to	
	change product or specification after approving by customer."	

CS18FS8192(5/W) CS16FS8192(5/W)

GENERAL DESCRIPTION

The CS16FS8192(5/W) and CS18FS8192(5/W) are a 8,388,608-bit high-speed Static Random Access Memory organized as 512K(1M) words by 16(8) bits. The CS16FS8192(5/W) (CS18FS8192(5/W)) uses 16(8) common input and output lines and have an output enable pin which operates faster than address access time at read cycle, And CS16FS8192(5/W) allows that lower and upper byte access by data byte control(\overline{UB} , \overline{LB}). The device is fabricated using advanced CMOS process,6-TR based cell technology and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The CS16FS8192(5/W) and CS18FS8192(5/W) are packaged in a 400mil 44-pin TSOP2 and 48FBGA.

FEATURES

- Fast Access Time 8,10,12,15ns(Max)
- CMOS Low Power Dissipation

Standby (TTL): 25mA (Max.)

(CMOS): 15mA (Max.)

Operating: 80mA (8ns, Max..)

: 70mA(10ns ,Max.)

- Single 5.0±0.5V Power Supply
- Wide range (1.65V~3.6V) of Power Supply
- TTL Compatible inputs and Outputs
- Fully Static Operation, No Clock or Refresh required
- Three State Outputs
- Data Byte Control(x16 Mode)

 \overline{LB} : I/O₀~I/O₇, \overline{UB} : I/O₈~I/O₁₅

- Standard 44TSOP2 and 48FBGA Package Pin Configuration for 1Mx8
- Standard 44TSOP2 and 48FBGA Package Pin Configuration for 512Kx16
- Operating in Commercial and Industrial Temperature range.

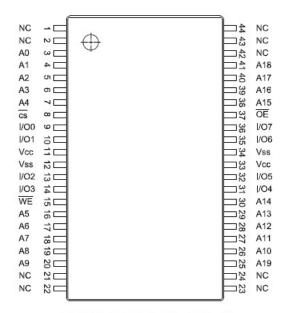
CS18FS8192(5/W) CS16FS8192(5/W)

Order Information

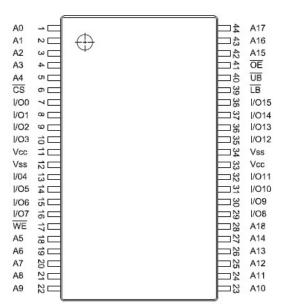
Donaitu	0	Dort Number		Speed		Doolsomo	Taman	
Density	Org.	Part Number	V _{CC} (V)	t _{AA} (ns)	t _{OE} (ns)	Package	Temp.	
			3.3	8	4	44 TSOP2		
		CS16FS8192WGC(I)-08*	2.5	10	5	44 TSOP2		
			1.8	12	6	44 TSOP2		
			3.3	8	4	48 FBGA		
		CS16FS8192WHC(I)-08*	2.5	10	5	48 FBGA		
			1.8	12	6	48 FBGA	C : Commercial	
8Mb	512Kx16	CS16FS81925GC(I)-10	5	10	5	44 TSOP2	I : Industrial	
		CS16FS8192WGC(I)-10*	3.3	10	5	44 TSOP2	i . iridustriai	
			2.5	10	5	44 TSOP2		
			1.8	15	7	44 TSOP2		
		CS16FS8192WHC(I)-10*	3.3	10	5	48 FBGA		
			2.5	10	5	48 FBGA		
			1.8	15	7	48 FBGA		

Density	Ora	Part Number	Speed		Package	Tomp		
Delisity	Org.	Fait Number	Vcc(V)	t _{AA} (ns)	toe(ns)	rackage	Temp.	
			3.3	8	4	44 TSOP2		
		CS18FS8192WGC(I)-08*	2.5	10	5	44 TSOP2		
			1.8	12	6	44 TSOP2		
			3.3	8	4	48 FBGA		
		CS18FS8192WHC(I)-08*	2.5	10	5	48 FBGA		
			1.8	12	6	48 FBGA	C : Commercial	
8Mb	1Mx8	CS18FS81925GC(I)-10	5	10	5	44 TSOP2	I :Industrial	
			3.3	10	5	44 TSOP2	i .iiiuusiiiai	
		CS18FS8192WGC(I)-10*	2.5	10	5	44 TSOP2		
			1.8	15	7	44 TSOP2		
		CS18FS8192WHC(I)-10*	3.3	10	5	48 FBGA		
			2.5	10	5	48 FBGA		
		1.8	15	7	48 FBGA			

3 Rev. 2.0



CS18FS8192(5/W) CS16FS8192(5/W)


*means max. speed

PIN CONFIGURATIONS

44TSOP2-400mil

CS18FS8192(3/5/W)- (1M x 8)

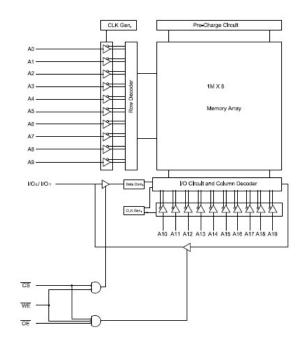
CS16FS8192(3/5/W)- (512k x 16)

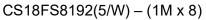
6x8mm mini-BGA with ball pitch 0.75mm

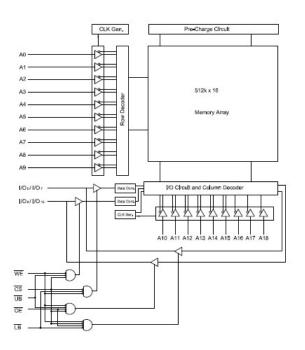
	1	2	3	4	5	6
Α	NC	OE	A0	A1	A2	NC
В	NC	NC	A3	A4	CS	100
C	NC	NC	A5	A6	101	102
D	Vss	NC	A17	A7	103	Vcc
Е	Vcc	NC	NC	A16	104	Vss
F	NC	NC	A14	A15	105	106
G	NC	NC	A12	A13	WE	107
Н	A18	A8	A9	A10	A11	A19

CS18FS8192(5/W) – (1M x 8) 48ball mini-BGA

	1	2	3	4	5	6
Α	LB	Œ	A0	A1	A2	NC
В	IO8	UB	A3	A4	CS	100
C	109	IO10	A5	A6	101	102
D	Vss	1011	A17	A7	103	Vcc
E	Vcc	IO12	NC	A16	104	Vss
F	1014	IO13	A14	A15	105	106
G	1015	NC	A12	A13	WE	107
Н	A18	A8	A9	A10	A11	NC


CS16FS8192(5/W) – (512k x 16) 48ball mini-BGA


4 Rev. 2.0



CS18FS8192(5/W) CS16FS8192(5/W)

• FUNCTIONAL BLOCK DIAGRAM

CS16FS8192(5/W) - (512k x 16)

Absolute Maximum Ratings*

Para	ameter	Symbol	Rating	Unit
) / II	3.3V Product			
Voltage on Any Pin Relative to Vss	5.0V Product	Vin, VOUT	-0.5 to V _{CC} +0.5V	V
Relative to VSS	Wide Vcc** Product			
Voltage on Vcc	3.3V Product		-0.5 to 4.6	
Supply Relative to	5.0V Product	Vin, VOUT	-0.5 to 7.0	V
Vss	Wide Vcc** Product		-0.5 to 4.6	
Power Dissipation		PD	1.0	W
Storage Temperature		T _{STG}	-65 to 150	°C
Operating Temperatur	e Commercial	TA	0 to 70	°C
Industrial		TA	-40 to 85	°C

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the

5 Rev. 2.0

CS18FS8192(5/W) CS16FS8192(5/W)

device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended DC Operating Conditions*(T_A=0 to 70°C)

Parameter	Operating Vcc(V)	Symbol	Min.	Тур.	Max.	Unit	
	5.0	Vcc	4.5	5.0	5.5		
Supply Voltage	3.3	Vcc	3.0	3.3	3.6	V	
Supply Voltage	Wide 2.4~3.6	Vcc	2.4	2.5/3.3	3.6]	
	Wide 1.65~2.2	Vcc	1.65	1.8	2.2		
Ground		Vss	0	0	0	٧	
	5.0	ViH	2.2	-	V _{CC} +0.5		
Input High Voltage	3.3	V _{IH}	2.0	-	V _{CC} +0.5	V	
input right voitage	Wide 2.4~3.6	ViH	2.0	-	V _{CC} +0.3		
	Wide 1.65~2.2	ViH	1.4	-	V _{CC} +0.2		
	5.0	V_{IL}	-0.3	-	0.8		
Input Low Voltage	3.3	VIL	-0.3	-	0.8	V	
	Wide 2.4~3.6	V _{IL}	-0.3	-	0.7] '	
	Wide 1.65~2.2	VIL	-0.2	-	0.4		

^{*}The above parameters are also guaranteed for industrial temperature range.

DC and Operating Characteristics*(T_A=0 to 70°C)

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input						
Leakage	l _{LI}	V _{IN} =V _{SS} to V _{CC}		-2	2	uA
Current						
Output		$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$				
Leakage	ILO	$V_{\text{OUT}} = V_{\text{IR}} \text{ or } V_{\text{E}} = V_{\text{IR}}$		-2	2	uA
Current**		V001-VSS to VCC				
Operating		Min.Cycle,100% Duty	8ns		80	
Operating Current**	Icc	\overline{CS} =V _{IL} , V _{IN} =V _{IH} or V _{IL} ,I _{OUT} = 0mA	10ns	_	70	mA
Current			12ns	_	65	

6 Rev. 2.0

^{**}Wide VCC Range is 1.65V~3.6V

CS18FS8192(5/W) CS16FS8192(5/W)

		15r	ns	60	
Standby	IsB	Min. Cycle, \overline{CS} =V _{IH}	-	25	
Standby Current	I _{SB1}	f=0MHz, $\overline{CS} \ge V_{CC}$ -0.2V V _{IN} $\ge V_{CC}$ -0.2V or V _{in} \le 0.2V	-	15	mA
		V _{CC} =4.5V, I _{OL} =8mA, 5.0V Product	-	0.4	
Output Low Voltage	Vol	V _{CC} =3.0V, I _{OL} =8mA, 3.3V Product & Wide V _{CC} ** Product	-	0.4	V
Level		V _{CC} =2.4V, I _{OL} =1mA, Wide V _{CC} ** Product	-	0.4	
		V _{CC} =1.65V, I _{OL} =0.1mA, Wide V _{CC} ** Product	-	0.2	
		V _{CC} =4.5V, I _{OH} = -4mA, 5.0V Product	2.4	-	
Output High Voltage	V_{OH}	V _{CC} =3.0V, I _{OH} = -4mA, 3.3V Product & Wide V _{CC} ** Product	2.4	-	V
Level		V _{CC} =2.4V, I _{OH} = -1mA, Wide V _{CC} ** Product	1.8	-	
		V _{CC} =1.65V, I _{OH} = -0.1mA, Wide V _{CC} ** Produc	ot 1.4	-	

^{*}The above parameters are also guarantee for industrial temperature range.

Capacitance*(T_A= 25°C, f= 1.0MHz)

Item	Symbol	Test Conditions	TYP	Max	Unit
Input/ Output Capacitance	C _{I/O}	V _{I/O} =0V	-	8	pF
Input Capacitance	CIN	V _{IN} =0V	-	6	pF

^{*}Capacitance is sampled and not 100% tested.

Test Conditions*

Parameter	Value
	0 to 3.0V (Vcc=3.3V or 5.0V)
Input/ Output Capacitance	0 to 2.5V (V _{CC} =2.5V)
	0 to 1.8V (Vcc=1.8V)
Input Rise and Fall Time	1V/1ns
Input and Output Timing Reference Levels	1.5V (V _{CC} =3.3V or 5.0V)
Imput and Output Tilling Reference Levels	1/2Vcc (Vcc= 1.8V or 2.5V)
Output Load	See Fig. 1

7 Rev. 2.0

^{**}Wide V_{CC} Range is 1.65V ~ 3.6V

CS18FS8192(5/W) CS16FS8192(5/W)

*The above parameters are also guaranteed for industrial temperature range.

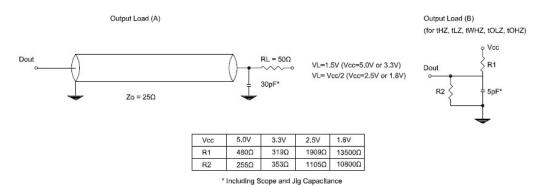


Fig 1

Overshoot Timing

Undershoot Timing

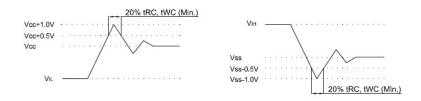


Fig 2

Functional Description (x8 Mode)

\overline{CS}	WE	ŌE	Mode	I/O Pin	Supply Current
Н	Х	X*	Not Select	High-Z	I _{SB} ,I _{SB1}
L	Н	Н	Output Disable	High-Z	Icc
L	Н	L	Read	D оит	Icc
L	L	X	Write	D _{IN}	Icc

^{*}X means don't care

8 Rev. 2.0

CS18FS8192(5/W) CS16FS8192(5/W)

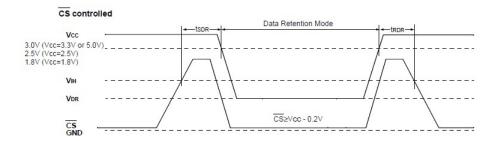
Functional Description (x16 Mode)

\overline{CS}	WE	\overline{OE}	<i>LB</i> **	<u>UB</u> **	Mode	1/0 1	⊃in	Supply
CD	"L	OL	LD	OD	mode	I/O ₀ ~I/O ₇	I/O ₈ ~I/O ₁₅	Current
Н	Х	X*	Χ	Х	Not Select	High-Z	High-Z	IsB, IsB1
L	Н	Н	X	X	Output	∐iah 7	Lligh 7	loo
L	Х	Х	Η	Ι	Disable	High-Z	High-Z	Icc
			L	Η		D _{оит}	High-Z	
L	Н	L	Н	L	Read	High-Z	D _{OUT}	Icc
			L			D _{оит}	D _{оит}	
			L	Ι		Din	High-Z	
L	L	X	Η	L	Write	High-Z	DiN	Icc
			L	L		Din	DiN	

^{*}X means don't care

Data Retention Characteristics*(T_A=0 to 70°C)

Parameter	Product	Operating Vcc(V)	Symbol	Test Condition	Min.	Тур.	Max.	Unit
V ₁ for	5.0V Product	5.0		<u>CS</u> ≥V _{CC} - 0.2V	2.0	-	5.5	
V _{CC} for Data Retention	Wide 2.4V~3.6V	2.5/3.3	V _{DR}		2.0	-	3.6	V
Keterition	Wide 1.65V~2.2V	1.8			1.5	-	3.6	
	5.0V Product	5.0		$V_{CC}=2.0V$ $\overline{CS} \ge V_{CC} - 0.2V$			15	
Data Retention	Wide 2.4V~3.6V	2.5/3.3	I _{DR}	V _{IN} ≥ V _{CC} - 0.2V or V _{IN} ≤0.2V			15	mA
Current	Wide 1.65V~2.2V	1.8		V_{CC} =1.5 V , \overline{CS} ≥ V_{CC} - 0.2 V , V_{IN} ≥ V_{CC} - 0.2 V or V_{IN} ≤0.2 V			15	
Data Re	Data Retention Set-Up Time		tsdr	See Data	0	-	-	nS


9 **Rev. 2.0**

CS18FS8192(5/W) CS16FS8192(5/W)

Recovery Time	t _{RDR}	Retention Wave form (below)	5	-	-	mS	
---------------	------------------	-----------------------------	---	---	---	----	--

Data Retention Wave form

Read Cycle*

Doromotor	Cumbal	8	ns	10	ns)	12	2ns	15ns		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Ullit
Read Cycle Time	t _{RC}	8	-	10	-	12	-	15	ı	ns
Address Access Time	taa	-	8	-	10	-	12	-	15	ns
Chip Select to Output	tco	-	8	-	10	-	12	-	15	ns
Output Enable to Valid	+		4		5		6		7	no
Output	toe	-	4	-	5	-	0	-	'	ns
\overline{UB} , \overline{LB} Access Time**	t _{BA}	-	4	-	5	-	6	-	7	ns
Chip Enable to Low-Z	4	3		3		3		3		no
Output	tLZ	٥	_	3	_	3	-	3	_	ns
Output Enable to Low-Z	t	0		0		0		0		no
Output	t _{OLZ}	U	-	U	-	U	-	U	•	ns
\overline{UB} , \overline{LB} Enable to Low-Z	4	0		0		0		0		no
Output**	t BLZ	U	_	U	_		_			ns
Chip Disable to High-Z	gh-Z		4	0	5	0	6	0	7	ne
Output	t _{HZ}	0	4	U	3	U	U	U	,	ns

10 **Rev. 2.0**

CS18FS8192(5/W) CS16FS8192(5/W)

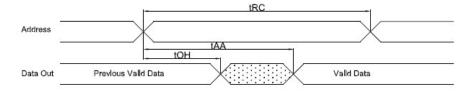
Output Disable to High-Z Output	tонz	0	4	0	5	0	6	0	7	ns
\overline{UB} , \overline{LB} Disable to High-Z Output**	t _{BHZ}	0	4	0	5	0	6	0	7	ns
Output Hold from Address Change	tон	3	-	3	-	3	-	3	-	ns
Chip Selection Power Up Time	t _{PU}	0	-	0	-	0	-	0	-	ns
Chip Selection Power Down Time	t _{PD}	-	8	-	10	-	12	-	15	ns

^{*}The above parameters are also guaranteed for industrial temperature range.

Write Cycle*

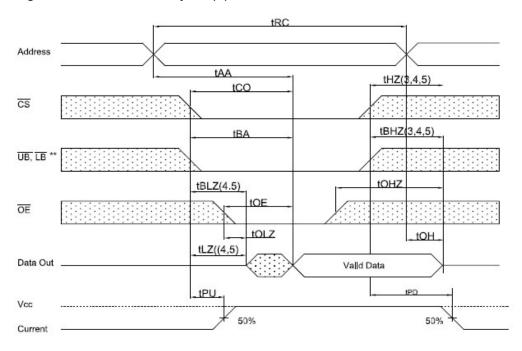
Parameter	Symbol	8	ns	10	ns)	12	ns	15	ins	Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Offic	
Write Cycle Time	twc	8	-	10	-	12	-	15	-	ns	
Chip Select to End of Write	tcw	6	-	7	-	9	-	12	-	ns	
Address Set-up Time	tas	0	-	0	-	0	-	0	-	ns	
Address Valid to End of Write	taw	6	-	7	-	9	-	12	-	ns	
Write Pulse Width(\overline{OE} High)	t _{WP}	6	-	7	-	9	-	12	-	ns	
Write Pulse Width(\overline{OE} Low)	t _{WP1}	8	-	10	-	12	-	15	-	ns	
$\overline{\textit{UB}}$, $\overline{\textit{LB}}$ Valid to End of Write**	t _{BW}	6	-	7	-	9	-	12	-	ns	
Write Recovery Time	t _{WR}	0	-	0	-	0	-	0	-	ns	
Write to Output High-Z	twnz	0	4	0	5	0	6	0	7	ns	
Data to Write Time	t _{DW}	4	-	5	-	7		8	-	ns	

11 Rev. 2.0


CS18FS8192(5/W) CS16FS8192(5/W)

Overlap										
Data Hold from Write	tou	0		0	_	0	_	0	_	ns
Time	tон		-		_		_	U	_	115
End of Write to	4	2		2		2		2		200
Output Low-Z	tow	3	-	3	-	3	-	3	-	ns

^{*}The above parameters are also guaranteed for industrial temperature range.

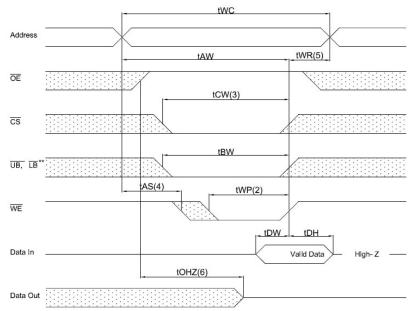

Timing Diagram

Timing Waveform of Read Cycle (1) (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$, \overline{UB} , $\overline{LB} = V_{IL}^{**}$)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform of Read Cycle (2) (\overline{WE} =VIH)

12 **Rev. 2.0**

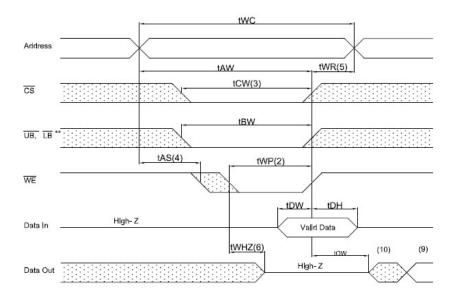


CS18FS8192(5/W) CS16FS8192(5/W)

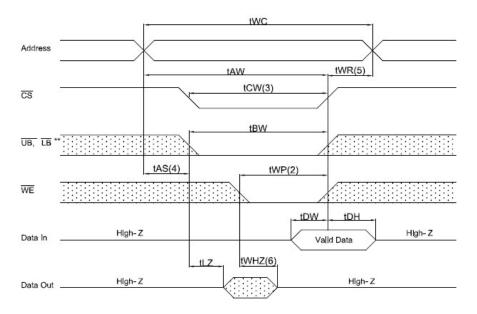
NOTES (Read Cycle)

- 1. WE is high for read cycle
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V_{OH} or V_{OL} levels.
- 4. At any given temperature and voltage condition, t_{HZ} (Max.) is less than t_{LZ} (Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested.
- 6. Device is continuously selected with $CS = V_{\rm IL}$.
- 7. Address valid prior to coincident with CS transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

Timing Waveform of Write Cycle (1) (\overline{OE} Clock)


^{**} Those parameters are applied for x16 mode only.

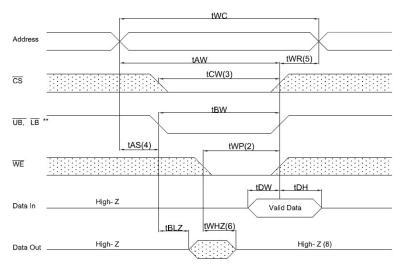
^{**} Those parameters are applied for x16 mode only.


CS18FS8192(5/W) CS16FS8192(5/W)

Timing Waveform of Write Cycle (2) (\overline{OE} =Low fixed)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform of Write Cycle (3) (\overline{CS} =Controlled)


^{**} Those parameters are applied for x16 mode only.

14 Rev. 2.0

CS18FS8192(5/W) CS16FS8192(5/W)

Timing Waveform of Write Cycle (4) (\overline{UB} , \overline{LB} Controlled)

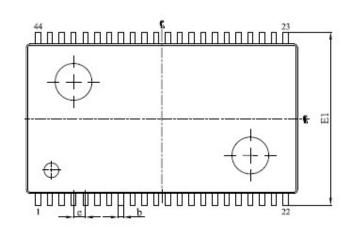
NOTES (Write Cycle)

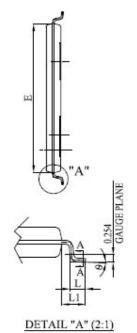
- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low \overline{CS} , \overline{WE} , \overline{LB} and \overline{UB} . A write begins at the latest transition \overline{CS} going low and \overline{WE} going low;

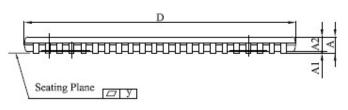
A write ends at the earliest transition \overline{CS} going high or \overline{WE} going high. two is measured from the beginning of write to the end of write.

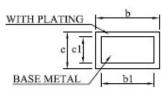
- 3. t_{CW} is measured from the later of \overline{CS} going low to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. \overline{WE} is measured from the end of write to the address change. two applied in case a write ends as \overline{CS} or \overline{WE} going high.
- 6. If \overline{OE} , \overline{CS} and \overline{WE} are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If \overline{CS} goes low simultaneously with \overline{WE} going or after WE going low, the outputs remain high impedance state.
- 9. Dout is the read data of the new address.
- 10. When \overline{CS} is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

15 **Rev. 2.0**


^{**} Those parameters are applied for x16 mode only



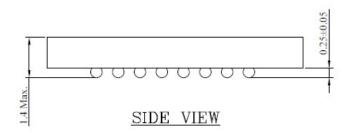

CS18FS8192(5/W) CS16FS8192(5/W)


Package outline dimensions

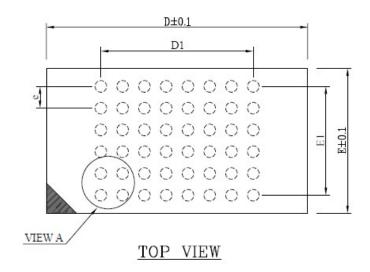
44L-TSOP2-400mil

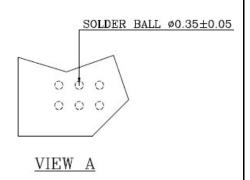
SECTION A-A

Note: Plating thickness spec: 0.3 mil ~ 0.8 mil.


SY UNIT	MBOL	A	Al	A2	b	bl	с	cl	D	Е	E1	c	L	Ll	У	Θ
	Min.	1.00	0.05	0.95	0.30	0.30	0.12	0.12	18.31	10.06	11.56	0.70	0.40	0.70	100	00
mm	Nom.	1.10	0.10	1.00	-	_	-	: :	18.41	10.16	11.76	0.80	0.50	0.80	1	-
	Max.	1.20	0.15	1.05	0.45	0.40	0.21	0.16	18.51	10.26	11.96	0.90	0.60	0.90	0.1	8°
	Min.	0.0393	0.002	0.037	0.012	0.012	0.005	0.005	0.721	0.396	0.455	0.0275	0.0157	0.0275	Ī	0°
inch	Nom.	0.0433	0.004	0.039	-	-	120	7 4 2	0.725	0.400	0.463	0.0315	0.0197	0.0315	1	-
	Max.	0.0473	0.006	0.041	0.018	0.016	0.008	0.006	0.729	0.404	0.471	0.0355	0.0237	0.0355	0.004	80

16 **Rev. 2.0**




CS18FS8192(5/W) CS16FS8192(5/W)

48ball mini-BGA-6x8mm (ball pitch: 0.75mm)

	BALL PITCH e = 0.75										
D E N D1 E1											
8.0	6.0	48	5.25	3.75							

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS.
- 2. PIN#1 DOT MARKING BY LASER OR PAD PRINT.
- 3. SYMBOL "N" IS THE NUMBER OF SOLDER BALLS.

17 Rev. 2.0